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Differentiating haemostasis from thrombosis for therapeutic benefit
James D. McFadyen; Shaun P. Jackson
Australian Centre for Blood Diseases, Monash University, Melbourne, Australia

Summary
The central role of platelets in the formation of the primary haemo -
static plug as well as in the development of arterial thrombosis is well 
defined. In general, the molecular events underpinning these pro-
cesses are broadly similar. Whilst it has long been known that disturb-
ances in blood flow, changes in platelet reactivity and enhanced co-
agulation reactions facilitate pathological thrombus formation, the 
precise details underlying these events remain incompletely under-
stood. Intravital microscopy studies have highlighted the dynamic and 
heterogeneous nature of thrombus development and demonstrated 
that there are considerable spatiotemporal differences in the acti-

vation states of platelets within a forming thrombus. In this review we 
will consider the factors regulating the activation state of platelets in 
a developing thrombus and discuss how specific prothrombotic fac-
tors may influence this process, leading to excessive thrombus propa-
gation. We will also discuss some potentially novel therapeutic ap-
proaches that may reduce excess thrombus development whilst mini-
mising bleeding risk.
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Introduction

Atherothrombosis, which refers to the disruption of an atherosclerotic 
lesion with superimposed arterial thrombus formation, is now the 
leading cause of death globally, accounting for > 25% of all deaths (1, 
2). The growing awareness of the central role of platelets in promoting 
atherothrombosis has led to the widespread use of antiplatelet agents 
in the management of a broad range of cardiovascular diseases (3). 
Newer and more potent antiplatelet agents are emerging that are more 
effective at preventing arterial thrombosis (3, 4). Moreover, combi-
nation antiplatelet therapies, typically aspirin and a P2Y12 receptor 
antagonist, are increasingly being employed in the clinic (5-7). How-
ever, the downside of these more intensive antithrombotic approaches 
is an increased risk of bleeding, which can partially undermine the 
therapeutic benefit of these approaches (8). Thus, there is a need to 
identify new therapeutic approaches that are effective at reducing 
thrombus propagation and vascular occlusion without undermining 
the physiological approaches underlying haemostasis. This is a chal-
lenge, given that the molecular events responsible for arterial throm-
bosis are similar to those mediating haemostasis.

In this review we will briefly summarise the important molecu-
lar events required for haemostasis and thrombosis, highlighting 
the major pathways that have been targeted therapeutically. We 
will also describe recent experimental findings indicating that 
some of the processes driving arterial thrombus propagation may 
be less critical for haemostasis. This will include recent insights 

into the role of specific blood coagulation reactions in regulating 
thrombus propagation and stability, the impact of hyperlipidaemia 
and diabetes on platelet reactivity and the effects of localised dis-
turbances in blood flow in promoting platelet accumulation onto 
the surface of growing thrombi. 

Molecular events underlying the haemostatic 
and prothrombotic function of platelets

The initiating event for arterial thrombus formation, particularly 
in the coronary circulation, is typically the rupturing or fissuring 
of an atherosclerotic plaque (9). Disruption of the endothelium 
leads to the exposure of a number of highly reactive subendothelial 
matrix proteins. In the context of platelet adhesion, the principle 
matrix proteins are von Willebrand factor (VWF), collagen (type I, 
III and VI), laminin and fibronectin – all of which engage specific 
platelet receptors to facilitate stable platelet adhesion (10-12). The 
relative contribution of the receptors is a function of the prevailing 
rheological conditions (10, 13). Under high shear, which is a fea-
ture of arterioles and stenotic arteries, the VWF-platelet glycopro-
tein (GP)Ibα interaction is the predominant receptor-ligand inter-
action initiating platelet adhesion (14, 15). VWF-GPIbα bonds 
have intrinsically rapid binding kinetics, rapid ‘on-off ’ rates, that 
on their own support reversible platelet adhesion with the vessel 
wall (15-17). Stable platelet adhesion requires a second adhesion 
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Figure 1: A ‘traditional’ model of thrombus development where pla-
telets adhere to damaged endothelium, rapidly adhere and aggre-
gate with one another in a process driven primarily by the release 
or generation of soluble agonists such as ADP, TxA2 and thrombin. 
Platelet stimulation by soluble agonists results in an increase in intracellular 

calcium and activation of integrin αIIbβ3 (inside-out signalling), allowing pla-
telets to form high affinity interactions with adhesive proteins, such as fibri-
nogen and vWF, thus promoting stable platelet aggregation and thrombus 
formation. Highlighted are the current antithrombotic therapies and their re-
spective therapeutic targets.
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step mediated by the collagen receptors integrin α2β1 and GPVI, 
the fibronectin receptor integrin α5β1 and potentially the laminin 
receptor α6β1 (12, 13). 

Once adherent, platelet activation is amplified by the release and 
production of a number of soluble agonists, principally thromboxane 
A2 (TxA2) and ADP (18, 19). TxA2 is produced in platelets from the 
conversion of arachidonic acid to endoperoxidases by cyclo-oxyge-
nase (target of aspirin and non-steroidal anti-inflammatory drugs 
[NSAIDS]) and their subsequent metabolism to TxA2 by thrombox-
ane synthetise. TxA2 is lipid soluble and diffuses through the plasma 
membrane to induce autocrine and paracrine activation of platelets 
through the G protein-coupled receptors TPa and TPb (19). Another 
key soluble agonist is the water-soluble purine, ADP which is released 
from the dense granules of activated platelets and stimulates platelet 
activation through the P2Y1 and P2Y12 receptors (target of clopido-
grel, prasugrel and ticagrelor) (18, 20). Although these soluble agonists 
have distinct receptors, they ultimately converge into common intra-
cellular signalling events that lead to the mobilisation of intracellular 
calcium to instigate platelet shape change, degranulation and upregu-
lation of the adhesive function of integrin αIIbβ3 (GPIIb-IIIa) (▶ Fig-
ure 1). αIIbβ3 is the major platelet receptor for fibrinogen and under-
goes a conversion from a ‘low affinity’ state to activated state upon pla-
telet activation – so called ‘inside-out’ signalling induced by intracellu-
lar second messengers (21). The interaction of αIIbβ3 and fibrinogen 
and VWF is central to the generation of a stable platelet thrombus and 
antagonists of αIIbβ3 (GPIIb-IIIa inhibitors) have been demonstrated 
to be highly effective at preventing thrombus development in patients 
undergoing percutaneous coronary interventions (22, 23).

Blood coagulation and α-thrombin  generation

Stabilisation of the platelet haemostatic plug – which is essential to 
prevent excess blood loss from sites of vascular injury – is critically 

dependent on localised thrombin generation. α-thrombin is 
amongst the most potent stimulators of platelets, inducing acti-
vation through the proteolytic cleavage of the Gq-linked receptors 
PAR1 and PAR4 on human platelets (24). Furthermore, thrombin 
cleavage of fibrinogen and subsequent fibrin polymerisation leads 
to the generation of a fibrin mesh that anchors the platelet mass to 
the site of vascular injury. Thrombin generation at the site of en-
dothelial injury is initiated by the exposure of tissue factor, which 
then forms a catalytic complex with factor VIIa, initiating the ‘ex-
trinsic’ pathway of blood coagulation (25). As discussed below, re-
cent experimental evidence has suggested a potentially important 
role for the intrinsic pathway of blood coagulation (26), particu-
larly factor XII and factor XI, in promoting thrombin generation 
throughout the body of the developing thrombus, through a pro-
cess that is partially dependent on the procoagulant function of 
platelets (27). Thus, coagulation reactions, in concert with specific 
platelet activating events regulate the rate, extent and stability of 
thrombus growth. 

Dynamic and heterogeneous nature of 
thrombus development in vivo

Whilst the central importance of soluble platelet agonists in pro-
moting thrombus development is well defined, recent in vivo 
studies have suggested that the processes regulating thrombus de-
velopment may be more complicated than previously anticipated 
(28, 29). For example, it has long been assumed that once platelets 
are recruited into a developing thrombus, they rapidly become ac-
tivated by soluble agonists, undergo marked morphological alter-
ations (shape change), as well as a series of complex biochemical 
events that lead to degranulation and the formation of highly 
stable adhesive interactions between adjacent activated platelets, 
ultimately leading to stable platelet aggregation (▶ Figure 1). 

Figure 2: A revised model of thrombus development demonstrating the 
heterogeneous nature of the activation state of platelets in a propagat-
ing thrombus. The stable ‘core’ of the thrombus is composed of fully activated 
platelets and is driven by soluble agonists and reinforced by fibrin polymerisation. 
The outer shell of the propagating thrombus is composed by discoid platelets. The 
emerging players in thrombus propagation are highlighted. Local rheological 

conditions influence the recruitment of discoid platelets to the growing thrombus 
while the intrinsic reactivity of platelets modulates the growth of the core and 
propagating thrombus. Stabilisation and propagation of the thrombus is partly 
dependent upon thrombin generation, which requires contact factor activation 
and the provision of a PS positive surface – which is contingent upon the proco-
agulant function of the platelets. 
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However, key features of this model have recently been challenged 
by a series of in vivo experiments utilising intravital microscopy 
(28, 29). These studies have revealed that a high proportion of pla-
telets that are initially recruited into developing aggregates retain 
their discoid morphology (30), do not elicit a sustained calcium re-
sponse (31), do not release α-granule contents (such as P-selectin) 
(32), and the developing aggregates are sensitive to localised alter-
ations in blood flow (28). Real-time analysis of thrombus develop-
ment has revealed that thrombi appear to have an inner core of 
‘highly’ activated platelets and an outer shell composed of ‘weakly’ 
activated discoid platelets (29). The former are critically depend-
ent on soluble agonist stimulation of platelets and the inner core is 
stabilised by thrombin generation and fibrin polymerisation (29). 
In contrast, the outer shell largely consists of aggregates of discoid 
platelets which are sensitive to changes in local rheological condi-
tions and remain unstable in the absence of soluble agonist stimu-
lation and thrombin generation (▶ Figure 2). It is likely that the 
molecular processes that underpin the development of the throm-
bus core are critical for haemostasis, while the factors influencing 
the propagation and stabilisation of the outer shell of the thrombus 
may have greater relevance to the propagation of pathological 
thrombi. In the remaining sections of this review we will discuss 
some of the important processes promoting sustained platelet-pla-
telet adhesion interactions during thrombus development, with 
specific emphasis on the role of disturbed blood flow, increased 
platelet reactivity and coagulation reactions linked to thrombus 
propagation and stabilisation. For detailed reviews on the role of 
collagen and vessel wall-derived tissue factor in promoting throm-
bus development, the reader is referred to several recent extensive 
reviews on this subject (33, 34). 

Factors promoting excess thrombus 
 propagation
Disturbed rheology

The demonstration that discoid platelets rapidly accumulate onto 
the surface of a developing thrombus at sites of localised flow dis-
turbances is of interest, given the known prothrombotic effects of 
disturbed rheology. The impact of flow disturbances on platelet 
adhesion function is complex and incompletely understood. For 
example, it is well established that flow disturbances at sites of 
atherosclerosis enhance platelet deposition at the apex of the ste-
nosis, as well as in recirculation regions and flow reattachment 
points (35, 36). Physical effects, such as the trapping of platelets at 
recirculation sites as well as the enhanced transport of platelets to 
reattachment points may partly explain these phenomena (37, 38). 
Direct shear effects on platelets is also likely to contribute to ex-
cessive platelet accumulation and activation (28, 39). 

Insight into the effects of shear on platelet adhesion dynamics 
has recently been gained from the development of high magnifi-
cation imaging techniques that can monitor platelet morphologi-
cal changes during primary adhesion and thrombus development. 

These studies have suggested that a key mechanism by which dis-
coid platelets adhere and aggregate under shear is through the 
formation of membrane tethers (28, 40). These structures consist 
of smooth cylinders of lipid bilayer that are pulled from the surface 
of platelets by haemodynamic drag forces (40). Whilst membrane 
tether formation is primarily a passive phenomenon (i.e. not 
requiring platelet activation), tethers have the capacity to physi-
cally restructure through an activation-dependent mechanism that 
leads to localised cytoskeletal remodelling (28). Restructured 
tethers can sense and respond to rapid changes in blood flow, such 
that with shear acceleration (elongational force) membrane tethers 
extend, whereas with shear deceleration, tethers physically restruc-
ture and contract (28). This latter phenomenon appears to be im-
portant for strengthening the adhesion contacts between discoid 
platelets. 

These recent findings on membrane tether dynamics have led 
to the hypothesis that biomechanical platelet activation, induced 
by microscale shear gradients, may play an important role in pro-
moting platelet aggregation and thrombus growth (28). Such a 
process may facilitate the accumulation of locally generated sol-
uble agonists such as thrombin, ADP and TXA2 within the con-
fines of the developing aggregate and reduce the ‘wash-out’ effect 
of flowing blood. This has led to the concept that platelet aggre-
gation and thrombus growth may be primarily driven by rheol-
ogy-dependent platelet aggregation mechanisms, with soluble 
agonists playing a secondary role, stabilising forming aggregates. 

Molecular events promoting shear-induced platelet 
 activation 

The molecular basis by which shear induces platelet activation has 
been extensively investigated using cone-and-platelet viscometers 
and various flow-based devices (parallel-platelet chambers, micro-
capillary tubes). The details of these studies have been reviewed 
elsewhere (10) and will only be briefly summarised here. Central 
to shear activation of discoid platelets is the co-operative adhesive 
and signalling function of platelet GPIb and integrin αIIbβ3 (41). 
Shear-induced binding of the VWF A1 domain of GPIb stimulates 
a transient calcium signal that is important for localised integrin 
αIIbβ3 activation and for the subsequent binding of the integrin to 
the C1 domain of VWF (42, 43). Integrin αIIbβ3 ligation of VWF 
induces a more sustained calcium signal (28), however in general 
the signals stimulated by the VWF-GPIb-integrin αIIbβ3 axis are 
relatively weak, with full platelet activation requiring the release of 
dense granule ADP (44). Notably, the adhesive and signaling func-
tion of both GPIb and integrin αIIbβ3 appear to be sensitive to hae-
modynamic shear forces, suggesting potential mechanosensory 
role for these receptors (45, 46). Inhibitors of cytosolic calcium flux 
(47), Src kinases (48) and PI 3-kinases (49) are all highly effective 
means of reducing shear activation of platelets. PI 3-kinase in-
hibitors are particularly effective in this context as they inhibit sig-
nals downstream of GPIb, integrin αIIbβ3 and the ADP purinergic 
receptor, P2Y12 (49) (▶ Figure 3). 
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Figure 3: Factor XII is activated by PolyP released from the dense 
granules of platelets resulting in thrombin generation required for 
the stabilisation of a propagating thrombus. Preclinical trials have dem-
onstrated inhibition of the intrinsic coagulation pathway to be a potentially 
safe and effective antithrombotic approach. The provision of a PS positive sur-
face necessary for thrombin generation is regulated by the platelet cell death 
pathways, in particular the necrotic cell death pathway which is triggered by 

potent platelet stimuli such as collagen engaging platelet GPVI. The reactivity 
of platelets is enhanced in diabetes and hyperlipidaemia in a process that is 
partly mediated by the platelet scavenger receptor CD36. PI3K p110β operates 
downstream of the platelet receptors P2Y12, GPIbα and αIIbβ3 and plays a key 
role in regulating the adhesive function of αIIbβ3 under shear. Isoform selective 
inhibitors of PI3K p110β are in phase 1 clinical trials and represent one ap-
proach to abrogating shear induced platelet activation.

Heightened platelet reactivity

Real-time intravital analysis of thrombus development in living 
mice has highlighted the dynamic nature of platelet recruitment to 
the surface of thrombi, in which a high proportion of platelets te-
thering to the thrombus surface form unstable adhesion contacts 
and typically translocate over, or detach from, the thrombus sur-
face. It is likely, although not formally tested in vivo, that the in-
trinsic reactivity of platelets plays a major role in regulating the re-
versibility and/or stability of these adhesion contacts. Increased 
platelet reactivity is a well-known feature of diabetes mellitus (50), 
hyperlipidaemia (51), cigarette smokers (52), obesity and hyper-
tension (53), all important risk factors for atherothrombosis and 

cardiovascular disease. Platelets from individuals with diabetes 
and dyslipidaemia are more sensitive to stimulation by threshold 
concentrations of soluble agonists and form larger thrombi on 
thrombogenic surfaces (54). Whether these platelets are more sen-
sitive to biomechanical stimulation remains unclear. 

Fundamental new insights into the effects of hyperlipidaemia 
on platelet reactivity have been elucidated from recent studies uti-
lising mouse models of hyperlipidaemia. The scavenger receptors 
CD36 and scavenger receptor class B member 1 (SR-BI) are both 
expressed by platelets. Podrez et al. demonstrated that in the con-
text of dyslipidaemia (high low-density lipoprotein [LDL] and low 
high-density lipoprotein [HDL]), pathophysiological levels of ox-
idised choline plycerophospholipids (oxPCCD36) accumulate, 
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stimulate platelets via the CD36 receptor and give rise to a pro-
thrombotic phenotype (55). Similarly, the scavenger receptor SR-
BI also induces platelet hyperactivity in the context of hyperlipi-
daemia by scavenging plasma cholesterol, thus altering the choles-
terol loading in the platelet membrane (56). CD36 is also known to 
bind molecules that are associated with diabetes, including ad-
vanced glycation end products (AGEs) (57), which enhance pla-
telet activation and thrombus growth, which has raised the possi-
bility that scavenger receptors may play a potentially important 
role in promoting thrombus propagation in both diabetes and the 
metabolic syndrome (▶ Figure 3).

Intrinsic pathway of blood coagulation and 
platelet procoagulant function enhance 
 stabilisation of the propagating thrombus

The role of the contact factor or intrinsic pathway of blood coagu-
lation in haemostasis and thrombus development has long been 
debated (58). This has been fuelled by the lack of, or variable 
bleeding phenotypes, seen in patients with factor XII and factor XI 
deficiency, respectively. In vivo studies on mice have suggested a 
major role for both factor XI and factor XII in promoting arterial 
thrombosis (59, 60). The mechanisms regulating contact factor ac-
tivation are currently being delineated, with recent evidence sug-
gesting a potentially important role for polyphosphates in the pla-
telet dense granules promoting factor XII activation (61). 

Platelets also play a key role in propagating coagulation reac-
tions by providing a phosphatidylserine (PS) surface for the as-
sembly of the tenase and prothrombinase complexes – requisite 
steps for the efficient generation of thrombin. Recent progress in 
our understanding of the procoagulant function of platelets has 
been gained through the identification of the calcium dependent 
platelet membrane protein TMEM16F (62) which has an essential 
role in phospholipid scramblase activity – deficiency of which re-
sults in the rare bleeding disorder Scott syndrome. 

The intracellular pathways that mediate procoagulant platelet 
function are also starting to be elucidated. Platelet PS exposure is 
regulated by programmed cell death pathways, including apopto-
sis and necrosis (necroptosis) (63, 64). The necrotic cell death 
pathway is partly mediated through the opening of the cyclophilin 
D-dependent mitochondrial permeability transition pore, leading 
to loss of mitochondrial membrane potential (65, 66). This ulti-
mately causes bioenergetic failure of the cell (ATP depletion), lead-
ing to rapid loss of plasma membrane integrity and the release of 
cellular contents in to the extracellular environment. In contrast, 
the apoptotic pathway is regulated by the Bcl2 family members 
Bak and Bax (63, 67), which forms oligomers in the outer mito-
chondrial membrane, leading to mitochondrial outer membrane 
permeabilsation (MOMP) and release of cytochrome C (CytC). 
Once released from the mitochondria, CytC initiates apoptosome 
assembly and caspase activation (68). The morphological and bio-
chemical profile of agonist-stimulated platelets are akin to those 
seen in programmed cell necrosis of other cells, suggesting that 

this pathway may contribute to platelet procoagulant function and 
stabilisation of the propagating thrombus (▶ Figure 3). 

Potential solutions to a sticky problem – 
novel therapeutic approaches

The principal problem with conventional antithrombotic ap-
proaches is the inherent risk of bleeding, as the processes targeted 
by these drugs are important for haemostasis and thrombosis (8). 
The relative risks and benefits of the currently used anti-platelet 
agents have been reviewed elsewhere (69). With progress in the 
understanding of the factors promoting thrombus propagation 
and stabilisation, it may be possible in the future to develop thera-
peutics that primarily target thrombosis with less impact on the 
haemostatic process. 

Inhibitors of factor XII and factor XI 

Inhibition of factor XI production by antisense nucleotides (70), 
specific irreversible inhibitors of factor XIa (71) and inhibitors of 
factor XIIa (72) have been developed and have demonstrable anti-
thrombotic efficacy in preclinical models of venous and arterial 
thrombosis with no associated increase in bleeding. Similarly, 
PolyP inhibitors have recently been identified and have shown effi-
cacy in mouse models of arterial and venous thrombosis (73), 
without increasing bleeding risk. Thus, specific inhibition of co-
agulation reactions linked to thrombus propagation and stability 
may have a wider therapeutic window than global inhibitors of co-
agulation that are currently employed in the clinic.

Reducing platelet hyperactivity

Targeting specific prothrombotic mechanisms that enhance pla-
telet activation is also a potentially attractive antithrombotic op-
tion. In principle, platelet activation by oxPCCD36 in the setting of 
dyslipidaemia could be reduced by decreasing plasma levels of 
oxPCCD36 or by blocking its interaction with CD36. CD36 deficien-
cy in humans and mice seems to be well tolerated and does not 
cause any overt platelet defects, suggesting that the targeting of 
CD36 is unlikely to cause bleeding. Indeed, CD36 null mice dis-
play protection from arterial thrombosis in vivo with no increase 
in bleeding (74). However, CD36 is widely expressed therefore 
therapeutic attempts at blockade may have systemic effects. There 
are reports that CD36-deficient individuals show features of the 
metabolic syndrome, including dyslipidaemia and mildly elevated 
blood pressure. Thus, selectively blocking the binding of oxPCCD36 
and/or AGEs with CD36 might be the best option for minimising 
metabolic disturbances. 

One of the challenges of targeting CD36 would be the identifi-
cation of individuals who are likely to benefit most from this form 
of therapy. Personalised antithrombotic medicine will most likely 
require the development of specific assays which can accurately 
and reproducibly detect platelet hyperactivity related to CD36, and 
be capable of monitoring the response to therapy. Thus far, platelet 
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monitoring has not proven useful for guiding optimal antithrom-
botic approaches, therefore it remains to be seen whether such an 
approach would be beneficial. 

Decreasing the prothrombotic effects of disturbed 
blood flow

Each of the key receptors promoting shear activation of platelets, 
including GPIb, integrin αIIbβ3 and the ADP receptor, P2Y12, also 
play a key role in promoting the haemostatic function of platelets. 
The risk of minor and major bleeding is increased with the GPIIb-
IIIa inhibitors such as abciximab (75); however, novel inhibitors of 
integrin αIIbβ3 that only target the ‘activated’ conformation of αIIbβ3 
have demonstrated antithrombotic efficacy without increased 
bleeding in preclinical studies (76). Recent studies have suggested 
that inhibition of GPIbα binding to VWF may also hold promise 
as a therapeutic approach without increasing bleeding risk (77). 
Some of these compounds, such as the aptamer ARC1779 demon-
strate a greater degree of platelet inhibition under high shear, 
which may account for the apparent wider therapeutic window 
(78). An alternative strategy to decrease thrombus propagation, 
without undermining haemostasis, is by targeting signalling pro-
cesses that promote biomechanical platelet activation. The signal-
ling enzyme that has been most thoroughly investigated in this 
context is the type I PI 3-kinase isoform p110β (49, 79). PI3K 
p110β plays an important role in modulating integrin αIIbβ3 adhes-
ive function under shear, by transducing signals downstream of 
GPIbα, αIIbβ3 and P2Y12 (49, 80). Preclinical studies have demon-
strated that pharmacological inhibitors against PI3K p110β are ef-
fective at preventing thrombotic occlusion of arteries without in-
creasing bleeding (49). Similarly, phase I clinical studies on the 
PI3Kβ isoform-selective inhibitor AZD6482 (79) has demon-
strated that PI3Kβ is important for ADP and shear-induced pla-
telet activation in humans without increasing skin bleeding time. 
Nonetheless, PI3Kβ is widely expressed therefore to minimise sys-
temic side-effects with chronic therapy, irreversible inhibitors of 
platelet PI3Kβ, i.e. an aspirin-like drug, may be required. 

Clinical perspective

The oral antithrombotic drugs that are currently used in the clinic 
primarily inhibit pathways associated with agonist-induced pla-
telet activation (3), and therefore target processes that are impor-
tant for both haemostasis and thrombosis. With the increasing use 
of dual antiplatelet therapy for coronary artery disease, as well as 
through the use of ‘triple therapy’ – anticoagulation in combi-
nation with dual antiplatelet therapy – in patients with multiple 
cardiac pathologies, bleeding has become an increasingly impor-
tant clinical problem. Whether targeting processes associated with 
thrombus propagation or stabilisation will lead to less bleeding 
complications, whilst affording the same level of thrombotic pro-
tection remains to be established. Nonetheless, preclinical studies 
on factor XIIa inhibitors and early clinical studies on PI3K p110β 
inhibitors, suggest that these approaches may cause less bleeding 

than conventional approaches. Time will tell whether this trans-
lates into improved safety with combination antithrombotic ther-
apies.

Conclusions

Progress in elucidating the molecular mechanisms promoting 
thrombus propagation has raised the possibility of developing new 
approaches to inhibit arterial thrombosis without substantially in-
creasing bleeding risk. With improvements in the understanding 
of the molecular events enhancing thrombus propagation other 
therapeutic targets are likely to emerge. Hopefully we are on the 
cusp of an exciting new era in antithrombotic drug development 
that can lead to more efficacious, safer and individualised anti-
thrombotic therapies. 
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